OXIDATION NUMBERS

Used to

()

- tell if oxidation or reduction has taken place
- work out what has been oxidised and/or reduced
- · construct half equations and balance redox equations

Atoms and simple ions				ns which mus become neu		
	atoms	Na in Na = 0	neutral alre	eady no nee	d to add any o	electrons
	cations	Na in Na ⁺ = +1	need to ad	d 1 electron to	make Na ⁺ nei	utral
	anions	Cl in $Cl = -1$	need to tak	ke 1 electron av	vay to make (Cl ⁻ neutral
Q.1	What	is the oxidation state	of the elements	in ?		
	a) N	0	<i>b) Fe</i> ³⁺	+3	<i>c) S</i> ²⁻	2
	d) Cu	0	<i>e)</i> Cu ²⁺	+2	f) Cu ⁺	+1

Molecules	'The sum of the oxidation numbers adds up to zero'
Elements	H in $H_2 = 0$
Compounds	$C in CO_2 = +4$ and $O = -2 +4$ and $2(-2) = 0$
	 CO₂ is neutral, so the sum of the oxidation numbers must be zero one element must have a positive ON, the other must be negative the more electronegative species will have the negative value electronegativity increases across a period and decreases down a group O is further to the right in the periodic table so it has the negative value (-2) C is to the left so it has the positive value (+4) one needs two O's at -2 each to balance one C at +4
Q.2	If the oxidation number of O is -2, state the oxidation number of the other element in
	a) $SO_2 + 4$ b) $SO_3 + 6$ (c) $NO + 2$ d) $NO_2 + 4$
	e) N_2O +1 f) MnO_2 +4 g) P_4O_{10} +5 h) Cl_2O_7 +7

1

Solas

2

F321

Complex 'The sum of the oxidation numbers adds up to the charge on the ion' ions in SO_4^{2-} S = +6, O = -2 [i.e. +6 + 4(-2) = -2] the ion has a 2- charge

Example What is the oxidation number (O.N.) of Mn in $MnO_4^{-?}$

- the O.N. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.N.'s = -8
- the overall charge on the ion is -1, : sum of all the O.N.'s must add up to -1
- the O.S. of Mn plus the sum of the O.N.'s of the four O's must equal -1
- therefore the O.N. of Manganese in MnO_4^{-} = +7

WHICH OXIDATION NUMBER ?

- · elements can exist in more than one oxidation state
- certain elements can be used as benchmarks

HYDROGEN (+1)	except	0 -1	atom (H) and molecule (H ₂) hydride ion, H [—] [in sodium hydride, NaH]
OXYGEN (-2)	except	0 -1 +2	atom (O) and molecule (O ₂) in hydrogen peroxide, H_2O_2 in F_2O
FLUORINE (-1)	except	0	atom (F) and molecule (F ₂)

Metals	 have 	e positive values in compounds				
	• value	e is usually that of the Group Number	Al is +3			
	• value	es can go no higher than the Group No.	Mn can be +2,+4,+6,+7			
Non metals	• most	lly negative based on their usual ion	Cl is usually -1			
	• Call I					
	 to avoid ambiguity, the oxidation number is often included in the name 					
	e.g.	manganese(IV) oxide shows Mn is in the + sulphur(VI) oxide for SO ₃ dichromate(VI) for Cr ₂ O ₇ ²⁻	4 oxidation state in MnO ₂			
		phosphorus(V) chloride for PCI5.				

0.3 What is the **theoretical** maximum oxidation state of the following elements? Na +1 P +5 Ba +2 Pb +4 S +6 Mn +7 Cr +6 State the most common and the maximum oxidation number in compounds of... BrSr 0 BNLi COMMON -1 -2 +3 +2 +1 - 3 +7 +2 +2 +3 +5. MAXIMUM +1 *Q.4* Give the oxidation number of the element other than O, H or F in $SO_2 \rightarrow \Upsilon NH_3 = 3 NO_2 \rightarrow \Upsilon NH_4^+ = 3$ $IF_7 +7 Cl_2O_7 +7 MnO_4^2 +6 NO_3^- +5$ $NO_2^- + 3$ $SO_3^{2-} + 4$ $S_2O_3^{2-} + 2$ $S_4O_6^{2-} + 2.5$ What is odd about the value of the oxidation state of S in $S_4O_6^{2-2}$? Can it have such a value? Can you provide a suitable explanation? 1/9 one Sulfur is +3 and watther Sulfur +2 depending where the S=0 is Q.5 What is the oxidation number of each element in the following compounds? N = +3C = -4 NCl_3 $PCl_3 \quad P = +3$ CH_4 $Cl = \uparrow$ H = +1Cl = -1 $I = +5 \qquad BrF_3 \qquad Br = +3$ C = + 4 ICl_5 CS_2 F = -1S = -2Cl = -1 NH_4Cl N = ?Mg = + H_3PO_4 H = + $MgCl_2$ P = +5H = +Cl = -10 = -2Cl = -1 H_2SO_4 H = +($MgCO_3$ Mg = +2 $SOCl_2$ S = +4C = +40 = -2S = +60 = -20 = -2Cl = -

F321

3

4	F321	Oxidation and Reduction
REDOX RE	ACTIONS	
Redox Oxidation Reduction	When reduction and oxidation take place Removal of electrons; species get less negative / more Gain of electrons; species becomes more negative / les	+5 -
	REDUCTION in O.N. Species has been REDUCED e.g. Cl is reduced to Cl ⁻ (0 to -1	+3 – O R X E +2 – I D
	INCREASE in O.N. Species has been OXIDISED e.g. Na is oxidised to Na ⁺ (0 to	-4 -
	OIL RIG Oxidation Is the Loss	-5 - -6 - -7 -

Q.6 Classify the following (unbalanced) changes as oxidation, reduction or neither.

Reduction Is the Gain of electrons

a) $Mg \longrightarrow Mg^{2+}$	oxi	b) $O^2 \longrightarrow O$
c) $Al^{3+} \longrightarrow Al$	red	d) $Fe^{3+} \longrightarrow Fe^{2+}$
<i>e)</i> Ti^{3+} —> Ti^{4+}	oxi	f) 2Q -> Q2 mon-redox

Q.7 What change takes place in the oxidation state of the underlined element ? Classify the change as oxidation (O), reduction (R) or neither (N).

a)
$$\underline{NO_3}^- \longrightarrow NO \ \mathcal{K}$$

b) $\underline{HNO_3} \longrightarrow N_2O \ \mathcal{K}$
c) $\underline{CH_4} \longrightarrow CO \ +2 \ \mathcal{K}$
e) $\underline{SO_3^{2-}} \longrightarrow SO_4^{2-} \ +4 \ \mathcal{K}$
g) $H_2\underline{O}_2 \longrightarrow H_2O \ \mathcal{K}$
h) $H_2\underline{O}_2 \longrightarrow O_2 \ \mathcal{O}$.

F321

How to balance redox half equations

Step

1 Work out the formula of the species before and after the change;

- 2 If different numbers of the relevant species are on both sides, balance them
- 3 Work out the oxidation number of the element before and after the change
- 4 Add electrons to one side of the equation so the oxidation numbers balance
- 5 If the charges on all the species (ions and electrons) on either side of the equation do not balance, add H⁺ ions to one side to balance the charges
- 6 If the equation still doesn't balance, add sufficient water molecules to one side

Example 1 Iron(II) being oxidised to iron(III).

Steps1/2	Fe ²⁺ > Fe ³⁺	
Step 3	+2 +3	
Step 4	Fe ²⁺ > Fe ³⁺ + e ⁻	now balanced

Example 2 MnO_4 being reduced to Mn^{2+} in acidic solution

Steps 1/2	MnO_4 \longrightarrow Mn^{2+}
Step 3	+7 +2
Step 4	MnO ₄ ⁻⁺ 5e ⁻ > Mn ²⁺
Step 5	MnO_4 + 5e + 8H ⁺ > Mn^{2+}
Step 6	MnO_4 + 5e + 8H ⁺ \longrightarrow Mn^{2+} + 4H ₂ O now balanced

Q.8

Balance the following half equations

-H2O
+ + 2e
0
M2O

5

6

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

F321

Step 1 Write out the two half equations

- 2 Multiply the equations so that the number of electrons in each is the same
- 3 Add the equations and cancel out the electrons on either side of the equation
- 4 If necessary, cancel out any other species which appear on both sides

Example The reaction between manganate(VII) and iron(II).

Step 1	Fe ²⁺ > Fe ³⁺ + e ⁻	Oxidation
	MnO4 + 5e + 8H*> Mn ²⁺ + 4H2O	Reduction

InO₄ [—] + 5e [—] + 8H ⁺ -	<u> </u>	multiplied by 5 multiplied by 1
InO₄ [–] + 5e [–] + 8H⁺ + 5Fe	$Mn^{2+} - Mn^{2+} + 4H_2C$) + 5Fe ³⁺ + 5e ⁻
InO₄ [−] + <i>5</i> ∕e [−] + 8H⁺ + 5Fe	²⁺ > Mn ²⁺ + 4H ₂ C) + 5Fe ³⁺ + 5 e ⁻
-	InO₄ [−] + 5e [−] + 8H ⁺ + 5Fe	$InO_{4}^{-} + 5e^{-} + 8H^{+} \longrightarrow Mn^{2+} + 4H_{2}O$ $InO_{4}^{-} + 5e^{-} + 8H^{+} + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_{2}O$ $InO_{4}^{-} + 5e^{-} + 8H^{+} + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_{2}O$

gives $MnO_4^- + 8H^+ + 5Fe^{2+} - Mn^{2+} + 4H_2O + 5Fe^{3+}$

Q.9

Construct balanced redox equations for the reactions between

- a) Mg and H^+
- b) $Cr_2O_7^{2-}$ and Fe^{2+}
- c) H_2O_2 and MnO_4^{-1}
- d) $C_2 O_4^{2-}$ and $Mn O_4^{-}$
- *e)* $S_2O_3^{2-}$ and I_2
- f) $Cr_2O_7^{2-}$ and I^-

Q q
a) Oxi mg > mg ²⁺ +2e
Red 30+2H+ -> H2
$Mg + 2ut \rightarrow Mg^{2t} + H_{L}$
b) O_{xi} $G(Fe^{2+} \rightarrow Fe^{3+} + e^{-1})$
Red Cr2072+144+60 -> 2Cr3++7H20
6 Fe ²⁺ + Cr207 ¹ + 14H ⁺ -> 6 Fe ³⁺ + 2 Cr ³⁺ + 7 H20
C) Red $2(M_{n}o_{x}^{-} + 8H^{+} + 5e^{-} \rightarrow M_{n}^{2+} + 4H_{n}o_{x}^{2+})$ oxi $5(H_{n}o_{x}^{-} \rightarrow o_{2} + 2H^{+} + 2e^{-})$
$2m_{n}o_{x}^{-} + 16tt^{+} + 5th_{0} \rightarrow 2m_{1}^{2+} + 4th_{0} + 50t + 10tt^{+}$ 64t
d) 0xi5(C2042 -> 2002 +20
Red 2 (Mnoy + 8H+ + SE -> Mn + + 4HO
$5C_{1}O_{k}^{2} + 2M_{1}O_{k}^{2} + 16H^{+} \rightarrow 10CO_{2} + 2M_{1}^{2} + 8H_{1}O_{1}$

Kd $3e^{+}_{+2}$ $\rightarrow 2I^{-}_{+25}$ $0xi +0+5_{2}0_{3}^{2-} \rightarrow 5_{2}0_{4}^{2-} + 2ut + 2e^{-}_{+26}$ e)

 $H_10 + S_20_3^{1-} + I_1 \rightarrow 2I^- + S_20_4^{2-} + 2H^+$

S) Ked Gr. 0, 2- +14Ht +6= > 2Cr 2+ +7HLO 0xi 3(21-) I2+30

.

.

Cr2072-+14H++6I-> 3Z2+2Cr3++7K0